'%3E%0A%3Cpath d='M-934.9 98.6H0v-26H-934.9v26Z' class='g0'/%3E%0A%3Cpath d='M0 98.6H935v-26H0v26Z' class='g0'/%3E%0A%3C/g%3E%0A%3Cpath d='M0 1169.7H935v-26H0v26Z' class='g0'/%3E%0A%3Cpath d='M184.9 578.8h8.5m13.3 49.5h16m-92 115.5h16.5m273.2 33h17.1m-381 49.5h17m347.8 33h16.5m-15.7 66H438M170.4 1040.8h16.7M748.2 361.6H883M747.7 436.3H883M642.6 527.4H762.1M519.5 618.6H653.3M734 676.8H861.5m-116 58.1H883M757.3 809.6H883M697.1 867.8h127M729.8 975.4H851m-305.2 58.2H669.9m32.6 74.6H827.2' class='g1'/%3E%0A%3Cimage clip-path='url(%23c1)' preserveAspectRatio='none' x='315' y='120' width='131' height='232' href='data:image/jpeg%3Bbase64%2C/9j/4AAQSkZJRgABAQAAAQABAAD/2wCEAAUDBAQEAwUEBAQFBQUGBwwIBwcHBw8LCwkMEQ8SEhEPERETFhwXExQaFRERGCEYGh0dHx8fExciJCIeJBweHx4BBQUFBwYHDggIDh4UERQeHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHv/AABEIAOgAgwMBEQACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5%2BgEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4%2BTl5ufo6ery8/T19vf4%2Bfr/2gAMAwEAAhEDEQA/APYOcjIHT0FZDQvGfur%2BQoAlVQedo/IUCHgc9vyFADxj2/IUAO49B%2BQoAY/X/wCsKVwFTPQgfkKYEdxLBHhZZYI2YgKJMDJ%2Bh60xkl3JG8gaKLywVGVKjg45/CkFiuWJ6YH/AAEU7CBceijHsKQE0cu19vTjqKAJm%2B78qoDg/NtBNWmAiOQhDwo7Z%2B%2BAAfp70NgM%2BVvmAHPYipsAuBwQBg9OBSAq4%2BYH2FFwHYFFwHL0IyaAHAj1H50AKDSAXPoaAFUZ5oA4z4navcWsEOmWk/lNcDdKyHDhc8AHtnmpnKxpCNzz4aa8%2BXlbcSP4zkmsuY25DWtNW17TbUwW9/IsYXagkAkCccYz29s1ak0S4HT%2BFvG1teLb2GtKun6m7eWOf3Fw3/TNj3P9w8j361opXMZRaOwTk470yR%2B3nOKLgSxnFFwJCA4xQA0qq4zzTbEGBgA7iBwM9hSGU2BBGPQUmA5T6g0WAeuCaAFKg9hTADGvpj6HFACogU5G4/ViaAGTGK2hkmkmkSNFLOS2QAOTQB4lqmtLrXiiV33PI5J4xiNB91fcgGsZdzpgkbFumcCszcsNb7kwQK0IMbUtLjvLWWxuEJjlBAIPKsDlSD2IPQ0LQzkje8HeNZ9PNno3iV2lO0RJqRGA75ARZB/CxH8XQkdia1UrnO42PSkYODgg84p2JHUgFU0DHPJ6UxDRIRSYEZQ7qYx4XAoAMelADlHGTRYB2PSiwBigDlvibem18ONBGxElydox12jBP8wPxqZuyLgrs8y8KaCYszOP3rnLHuO%2BKyvc6oRsdpa2GF5FIpl%2Bz0yS5k8iCPfI3QZAz%2Bdc%2BLxlHB0nVrO0USk27IXVfDN9Y23n3EKqpOBhgTnGe1eDl/F%2BW5hXdCjPX0sXKjJK7OV1HTFmiZdg7joDken6V9OpX2MHG5H4e1jWtFjnME32lZH%2BaK4yyocfw4IKg4960izOUDrfDnjvT9X1WPSmt5bS88tmmWRhtVgQAFP8W7kj6c4NWZ8rOxOdirgDBJz65/8A1UWENI5oAVgKAER0d2CsrFTyAelAEgHFAChRQAuOadwFApADYAJoA898YzrqmtiEDMVqdmfVu/68fhWc3qb04k2m2yIoG2s29ToSsa0MalcACkMHyjAocMORg9Kxr0qdeDp1FdMVuqL0niXUPLjRxEQF2vuXO88dRXwy8Psv9pKpGTV9rPY39tIqy3ui3R3ahpXlnPMls2P/AB2lUyHOsC%2BbB4nmXaWo%2BanP4kYviTS9GSBLrSrxpfNYo8Lrhl4Jzn6%2B1e7kGOzWvOVPH0lG2zWzMKkILWLPOddtxBeWWuIj7tOnBuUHVos5z%2BBGfzr6rqc72Pd9PvLXU7GC/spDJbToHjYjGQfarOYs/KKBikr6UgI%2B5wKqwhc0rBceKQxRQA7tQBS1e8WxsnuGGWAOxfU4z/Sk3ZXKiuZ2POXkaOMOAXMkwjGOpY8sfwrmcrnfGNjpbCxnnjBBC%2BpqrCLwtI4VIMuT7UWEUbiBi5ZZmXjHFRa5SIBHltrHJ9TVJBsWILUyAoelXFXIluVb2wMKlvvL3FaJWM7mBeQQx36zybTBJ8koPQq3BP4Hn8/WmwaLXwhu59I1TVvAF7IzmwP2zTpHPL2sjE7ffa2fz9qpM5ZRsejAcHp%2BNDJWggX3zQMB1qkMdj0oEKtIAzigDD8T%2BIRpe22hVXu5BlVb7qr3c47dsetRJpFxjzHDanqur6ghe4mMtuzYT5Qoz6gfSsJybR2UqaTuX7O33R2ZYEhLklf%2BBI2f5VkdDVjtFTZGiLjOK2RjIiktZcHIPHJNMSRnSbt5WsmUh8du%2B0yeU5HfjtVxJZKblooyI7f5vUtVXsPlKVzc3CKXuYv3P8TLzt9zVqVzOUbHMeIYi1lcQg5R1YAj0IqnsJMztQvmtr/wR4xDeXJHcjTtQb1jmG0lvUA4P1NTSehjVtc9hdWXI3VozIiDNtHPOOaLATZOaoBwoYmOHSkIa/tTGefeK4vN1nVXzyPLTPooRTgfixrlqvU66KViPRrSbUJ0tY1Z1jQ8AdTjP8hXDicVTw8Oeq7I7II147YoYIuuxvMb26gfjyfyq6VSNRc0XdDnob0Lqrg%2Bg9a60YDTfNcXIgDBI0G1mx19h70rjsVmSJZT3PU85NS1cCOa/t2hIFwiqhwSWAA/zmqWgWGNLZqu9L2OUnupLn9KLoFcrm9UtsjkkI94mA/UVPNYrluYuuQeUFwMwyHacDG0nocds8j61pF33MJqxx/hS0sLnxjL4I17z5tL1TN3YoJCu2aMh2iyOdpxux19DXRFKxxzbPdnUbSPTtVELYiCDnikHMNikVwSAQRwQRyv1qSybtTuIKAEY8fXgUMDz3U2lmv9SaXEcZuX%2BZj/AArgf0rlnqzspKyNnwtfWNpeWbRBnSMs7uF65VsAepyR7V83xRllXMcunh6XxM6KcrSudPrqxTCO7ghjEcw3FwMMx9/evluAHUwzrYLESfPB7Pt5G1ezipIxJpfLR274r9OOVblWQmJxg8j5s1nfUtIfHYF4nlkRnEn8AONvt9feqbKdiVbDTYo7dIYViVCA67ACODj8M0pbaEdTes9J0l4pLmCdg6jBV2CqD23DHr3r8nzvijOMBj/Yyp%2B7fS13dHVThFoqXOh3W0MUWQEdYzmvpcBxnl%2BIahUbhLtLQidNrY5LXlZp0hQfuohmTcuMt6fh/hX12FxdCvFOnJP0OWa7nnXjOcaZ4j8OayPlNlq0LMR18tjhh%2BIr0YO5x1UfQjLg1bML3G4oApOqsVIJVh0I6iosajlldciReOzjp%2BI7UhEqtkZHSmBR8Q3r2OiXV3EcSRx/IfcnA/nSk7IqKuzyua%2BuLxhaxEmNj%2B8buw9K5kdt%2Bx1miwksgA4XH4cUx9DudJVZrR9PlON3zRn0avzvijDzyvG083oLbSfmu/yOii%2BZOLMTUbcmOVACDg59q%2B9oV44ilGpHZq5k1ZmerFmX1JA/LmqLNGOcoM7hg4yCOKaIYxbRr25S4eV1gUbflfG/n5uR2G0jjvVJCexcaOGGBgkXLjDBuSecjOayq4alUkpSjdoSbKMt3c2RMlrO8eB0B4/I15uMyDL8av31NM0VWUdiCXxHc3NtJDeR29zuUqHeMbl9xjj9K8fDcGYbCYhVcNOUbPa%2BgpVpPdHk/wAX7MTeE7ySIlXh2yqR1BVgT%2Bma%2B4p6M4qquj3bw9fDU/D2m6iCP9LtIp/%2B%2BkDf1rU5Ni6KAKh61Jqxw4pEkAh8uQNAwQEjchGVI74HY%2B/6UDRz/wARJivhoLIuwyTorKDnjk4z%2BFRU2NKe5xelQ4IlYZLngDsBWR1pHaaSojUE1LY7G3b3BDhkZlYHOR1FYV6FPEQdOorpjWjILyVmJyckg5J6mrpU40oKEFZId7mLfO9kVkAUq/TPr35oZadyCeU3tssLgojH5sHlvaqQmb2jXSt/oaELHECDx19V9hTTEx15cg9OgpksxtSd3ibbk84wDTEkRWkLLCC%2BAfpVc1hctzlvH2mfbtEvLZZCplgdPbJBA/z7VUHqZVI6HWfAvVBqvwr0KfZsaG2Fq4JzzESg/MAH2zXQcT3O3JHqKBFapNQqbisICOaAOJ%2BKM4YadZ5%2B%2B7OR9AAP5mpqM2pdzO0yMMS2OFAUCsjqRv2z4HNZSZRcjmCAnNCEMa5jLjcaeo9hlwI5ZUEih489D0qgINXh8jyjGhVc8VIIdprIs0ky5DSDawxxn1pMuxOLaWWRih60KRLQJD82HA%2Bf%2BdWKw5ogYynpQM5TxMWSJlx3/rVw3MauxL%2BzUQPhns/u6hOP/Qa6lscEtz0vcPSgkhPFTc1EPSoAjBw1AHnvjuYT%2BK7aFekMIU/UnP8ALFRM3orQu2UAjt93frWZ0RBpnDYXpUWKuTxSuRz3p2KSJBGX55oB6DorlVlMEh6DIpXIL0jNcIoY5CjigCkY3hkIHXGfx7UmilIs%2BGLs3VosrZww4P1pR3CRoajAfIQx5BOGOOxFaCGQhbicpwrOuce9Azn/ABxaAWbSAc45qomc9jnv2f7z7Nqnibw5k%2BTHOl9APTzB84/ML%2BddUdjz5bnrnFMggZueKhGgGpGRt96gDy2djf8AiC5uu5lYj6ZwP0ArJu7OmmrI6SFZRb4I7UjdAIQVyKVh3EGVOKBplqOZETLVLQ2ULhluboGLPHU0rE2NmA7EC98UIQt8y/Z9n8bjGfQU2hoydI1a1kvpbK3G1LchfZvce1KKG3c6GK%2BYkFsEdMGhuwWI76JGvYJ7V8fNjZ6AmmTsVPFhU2EyHBKoc1S3Jkzzb4RSGD4xapDyBPoivj6SqK6o7HBUWp7WZOn0qjMQcn8KhmoGpAo61drZaVc3RODFEWH1xgfqRQNK7PN9BVgyu3JY96xOyKO5sVR0RDjpSLIruNYnwvQHmmBTuIHPPIBpMaKt2rpbgKcu5wo7mk2W2WLeBba1DHqOvuahkmhCR5W40IRlX9008ggjcjefmIP3VH%2BNWh2RFbWsRvVMaKI4lwCB39KBWNcsEj5x%2BNJq4XIftbJiRsgZwuOSx9qLWJZl%2BJrpo7Dy5m23N23CZ%2B4n/wCqrViGjgvAF9CPj2kcRG2TSpYBzx8pV8fpW0HdHNVVme6lhxgg1ZgP5yPoKk0FJ4pAc38QXKeGpl/56SIn/jwP9KUtioK8jm9Mi%2BSMAVidqWhu207RzqvYDvQNmo8aXK53D5ufpimK5Nd2qGMrG2fl4JFAzlrSeOKaE3DAvISFB7CoZZr6hGHt02YIzk1NiUytrs0tv4ZaeDAld0iQnoCzBc/hnP4U9kNbmHYRbLgQJLJNMwBkk7KvtTVym7G4uLYBFHPpV2MmxzMgKGQNJI4ykK9cep9BSHcq398LEPNsWe72Ham7bHEvuew9T1/lUtpK7GlfQ8b%2BIXimRL12jvhdXDZ3Mgwij0Uen15rhlWlKWh1xopLUy/gncT3Pxj0qZsyM0N0WP8A2y/xxXoYdtxueZi0k7H07iRePKI%2BmK6WcbaZdJ/kKksADimgOe%2BIMZfw6xBHyzRn/wAex/WlNaGlP4jD0pPuj0rA7C%2B65nyByBSGXrORl70xWLl1M/k7ySSo4oA5DUbWSXEqSqArF1BHKk1JaLWj6h58MlvIf3sZ2ketNaktWLHiSKa88KXdtaAGdSk0O5goyjBsZ7dKmq1CDk%2Bg1ubWh%2BE7zTtHNxKYnbZvba29n7nBGc59u1fFw4%2Byz6wsP7127XaskXOhJq5zkt69zqhtLeKYuv32ReV/PofrX2kK9Ook4O5z27mo9sltaM08y20IXLbGy/4saptLVjjdnjPxU8bQO0mk6NlLZR%2B8YHmQ%2BpPU15uIxHO%2BVHo0KPL7zPILueaSTcxY7jzmppo3nsep/sxWyz/EtpXGfs2lTOB6FpY1/ka9nDJcp4OMfvn07tHcCuiyOK5WQnj6CszUkBNArmL43iMvhq5A52GN/wAnWiexpT%2BI57Sz8gOa5zsTuaCjDsx7jikUSRSbDmgC15ySRMmeop3AitbBJY90xGMcA0mO5g%2BJ7Sz0hlv4pvLnLDaoPLn6VOwty7pOow3FnDJlTwAyk9ea05VJGbk0yxp/iDVNBRdISdTabg1o7Dd5a8/u%2Be31r5DG8EZbjMS8ROOr37GqxMkrIsaX4qnv9dns9S020nijjVmm2GOXJJ/iHUcegrzKnBk8I%2BbAV5Qfa90axrc695HOfFLXPCF3oF9DbaleW99CmUg27kmbsu7n37iuehiM/o11RxLjOHfZnXRoxeqR8/TJDNMxcAFjk819TFaHSzG1MRi7cL0UV2UYnPVdj179k60L6/4g1LaQkNpDbhvUu7Mf/QBXt0VaJ4GKd5n0GsisPlYNg4OD3rS5zajB0H0qbGo4UCK2qW/2rTbm3P8Ay0iZfxIpS2KT1OE0qUeWueMVgztizYMoIGR%2BVKxdxUG9go70WC5cgs0Q7txc9fakInnDIm4mkxmR9jt73UfNlG7y0GMjPJJqJblROdtYZtN168CuPsUsqiEY%2B64GSM%2BmeMVdOWtiKkdLmjZtFfRS2s8DK46N2IrodjnPPviHqN/ot7bK1xKglDQsyHHmqBkA47jn8687HylGF4ndg4qT1OE1vVU8tpDj5ep9TXiwjzu7PXdoqyOYN/ly7Hqc12cjM3JFKeZpHLE/eOM120IWOCvM%2Brf2d/D39ifDyC6kXFxqr/bW4wQhACD/AL5AP1Y160VZWPDnK8rno4AA4AFMkrEksgGMYyT6UrGhKDzSEFJjPP3i%2Bz6pc22MbJWA%2BmeP0xWLWp2U3oaEUZIFSak8aOJDxwMUAXopcMBUPcRLdEzQeWvUnrT3GcT4ka6tPFGlaTaX0kX2lHnulTGWQMqqMkfLyT09/SpkionQ65bJ/ZlysQUeWCy5GBxzx6URImzJ099sqsSxzgcmt0zA5r4vaadT8LXUsEe64tkNxFgc5Tk4%2BoyPxqKtNTi0bUZ8kkz53vLx7qNSPuYzj685ryY0lTdj1%2Ba6KWWzzWyVzKTaR2fwl8JyeMfGdnp7RlrGJvPvm9IlIyPqxwv/AALPau%2BhDW55eJqWVj7IiRY41SNVRFG1VUYCj0HtxXYeaO5pAQgYH4U2ai9KgVhaQzjPGkTWerxXyfcnTDf7y8fyxUzR0UXdWLOiyxXKZLr%2BdZHRc6COyRoxjnNAXK8trDDJh3IOeg5pMYsc0Eb/ACoz49eKm9gSPNvG009n46h1iYD7PJHFEjdNpVg20/XDc%2B5pN3Gjtb%2B6inilWMhlkBGfUGqSJZytjdY4Y/PGwVx6GtkZNWJrm4HlJvXKiQxuD3B4/mRQ3YEmfMF1BBBGwt0dVDttDdl3HaPwGK8qrK9Rns0o/u0V7ezubmURxRsWYgABSSfbHc%2B1aUtXZGFZ2V2fW/wV8EL4N8LhblR/al7tluz/AHOPljH%2B6Cc%2B5PtXqQjyo8SpLndzvRiruZ2QuBSuFkQDoPpTKEPWlYBy0aBcoeIbAajpM1vgGQDfGfRh0/w/Gpkrlwlys8vt7i5s5C1uSPVSelYHWmjctvGE9tHsuLacMFzlRnP5UDsXbPxhbTORIhDf7S80ijc0bVtPupGGwM31xRoyXcp/EbS7DU/C1xE6%2BUCu4Pn7pHII%2Bh5/Cm4oXNqcR4Fv4dU0GwvIpC2%2BBTwehxgj880WsUmmaV9YbxI1mEjmY5fJxu9/rTTsJq5j3Vnqtxc3cJmjiXenH3unX9MUPUWxly%2BErGBAz2sEpjHyll5//XWLw0G7s1VeaVrnaeBPBNjpsMHiW6SM3Pk%2BZZwom5LcMOGwOWcg9e2cDnJO8KUYbHDVqym9Wd5p9wJ7SKberb0ByoIBOOcZ56%2BtbpmRbU0EiigCuTii5QKQe9FwHigAzUgcR4p8M3C3kl7pyNJHIS7xqOVPfA9KiUexvCp3OPkuvLGyRyrA/wAQ5%2BlQdNzY0y3guWBZQRjORSsJ3N%2BztrGGZXjYoV64osLUwfifrgOgSaLppmudU1ENbWdugw0jsMfgAMknsBVLUzehqaZ4UPh/wnotjGq%2BZZWKQ3LxDOXAyze4LFv0qpRJpz1sylLMROhjYEMM5B61mzoTKPg8LqmmSyw30gvFlcTIQCNwYhu3Y5FVEyk2ibWIpbZUFxcKQxAz6c1Tdhbno2hKy%2BH9PV02MLaMFcYx8oq0tDme5OyjHpjvTJHWssc0QkicOh6EUILEufenYCqfmXHtQMag8tANxbAxk9T70gHo2aQD15oAdkjpxTA88vdPt7fWdVmVFdzMWBK5xuGcD6E1hJ2O2nqjE8H/AOjQXMBd2cXTqSx7bUYY/EtUxdy2auualbaNpct/fS%2BXGgznufYDuaoi5c%2BGPhe5iuZfFuvxEareRbLa3fn7FAedv%2B%2B3Bb06djWsEc1SV2d6eoOKpohHlAXyZr6BMkWt68aj0UPxWDO2GqGaXp76V4jnljO2O%2BfzAmOFkx834NgH6g%2BtNbhPY2L62/tHXrCzaIshlUsvbaDlv/HQ36VbWphzaHopNamDGrjNISILaFLWLy0LEFixLH1o2Ak3D1ouBCnCgVIxTzQAgXDZB7YNAEinFACSyLHG0jnCqCSfQCgaRwj3P9oy3Lwgr5srNkjoOg/SsHqdkHZFGd7bT0aaTakUILFicD3JP9aEhSY/wjoF14o1Cy8U62vl6bC3nadYuvMpx8s0gPQDkqvqQT0xWkYmEp9EemD3IqzM5rxd4rstHAtYHS4v3%2B7GDkJ2y2On061MpKxcIORw1kLyGe8lvCrtLJ5shHTc3JqErm/wmha3p1DUlvHwIYeAexOKvYT1Om8HQsLt9UuF51BM22f4I1xx7FiS2PbB6VRhJnUsc1Rmxo4oAM0AGRTC5VVuahjF5pXAWi4Cg0DMjxfctBokyRk%2BbNiNfx6/oDSexpBXZwei6xCtq6KyngkEHr71mb7GZ4qmi1S60zR5pVjtbu8j%2B3FjgeQGy4J9DgD8TTTJlse0oV2DbgL2x0rU5zN8U3Go22g3U2lwSz3gAESxxl2ySBnAB6A5/CufE4mnhqbnUkkvMulTc5WPOdI8N6nbS/2hrFncQzSEspnQqWPUnnr1/WvMwWb4TGzcaFRSt2Z2ypOCuReIboeZFYwyJG0r/Nz0Hc/lXrrQwZZt1imW00qE5juZlt/lOTsP3v8Ax0NRuyZSsj0vVI3Sy32ynfbESRqvfb1X8VyPxrRnPe7LKSI6LJGwZGAKkdCD0ppiFZwO9FwAMD3FVcAB96GwK3wv%2BHS%2BKPAGj%2BINQ8Y%2BKEur%2B386VIZ4FRSSeFBiJA49adkB0v8Awp2z/wCh28X/APgRB/8AGaLAcz8Tvh%2BfCfgu81/TvGPiaa5tJYCiXE0DRtunRCGAiBwQx7ilZASn5TioaHc474gx6hqN1aaXZW0wh8t5rm6B2pHH/EA3ZyAQP98HtWcjSnozzucRpdRG1KqONyRjCgHoAPYduwxUo2Lr2azpJJKMSEjBbtikxHpXgDUv7Q8MQ7mBmtXNtIM8jaBt/wDHStaRZjNWZh%2BLPEN3ZeMYBp908T2SDgHgu2SQR3G0r%2BdeZm2XUsyoSoVtmdFD3dTc1X4k6fc28ZvNDiuURAsiFvm8wkjCHng/L781%2BdYTw%2BxODk6mHxLjK%2Bll089TsliVs0cpfr4G1C9u0vP7Y8MahC48/wA%2BIzwoWAAww529OeBzXrKfEeXfEo1or5P9TL9zPbQ0NF0KLQfFGhtDq1pq0V1FKInib5lATJcjt6dc8mvoMizurmLlGpRdNx7nPiKagtGd%2BT2r6Y5CKGJIYUhjXCIMKPQUgIL6aK2geeZgkaDLMegFACxPn6UATM1AHZ/s/f8AJGPC/wD14j/0I1qBzmkeIdY8Z/HLxd4WOqXml6P4Vt7VVgtWEcl3POpfzHfG7YoGAowCeTnpQBc%2BMNpqFj8DtVttT1N9TuluISbl0VGdTeoUBCgLkKVU4AHFAGC3LH61mBDeWsd3aS20pby5VKvtbBI%2BvalYdzDtvBPhq1lE0On/ADJHsQGRiFHr16%2B9TyGiqPqcPZTw3UDNuBVCRuOexx3%2BhrM2WxsfC/eniDU41c%2BS0Afbn5S2eD9cZpw3MpjfGHhbV7jxFJqVrEk0MjKAEb584AyR2AAxnPem4NsIzsjW8PeBobC%2Btrm9u/tKW581YtpGZsn5ic8hc8DHXBPQCrUbESm2daY4vOM3lIZCNpbAzj0zTIIWtbRr5L02cP2pF2LMUG8L6A9cdaSjFO6Q7stbs0xDtwoAilCupRlDKeoIyDQAw4B4xQAm4UAT/Bb4p/DrR/hZ4f0zVfGmh2d5bWgjmgmu1V42BOQQTwa1AsX3i74JT%2BL28WWvxE0nTtZktxa3Fzaaki/aIgcqsinKtjscbh2NAGd8V/iH8OtQ%2BFt7oGg%2BMtJ1G7kktY7eBL4TTSt9piPclmPU0ASlvmOPWswHZpAIwDAqehGKAOM8YeHn%2BS50q3GxIhCYI1xnGcH9aU422NIz6EvgPRLjTjLfXimKWSMRJFnooOST7k4%2BgHvURWtxylc60Nxya0TM2KX9aBDN3vQAB%2BaAJE5FACO20UARNKPegYwuMjg0CHHjtQAA/9k='/%3E%0A%3Cimage clip-path='url(%23c2)' preserveAspectRatio='none' x='183' y='120' width='132' height='233' href='data:image/jpeg%3Bbase64%2C/9j/4AAQSkZJRgABAQAAAQABAAD/2wCEAAUDBAQEAwUEBAQFBQUGBwwIBwcHBw8LCwkMEQ8SEhEPERETFhwXExQaFRERGCEYGh0dHx8fExciJCIeJBweHx4BBQUFBwYHDggIDh4UERQeHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHv/AABEIAOkAhAMBEQACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5%2BgEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4%2BTl5ufo6ery8/T19vf4%2Bfr/2gAMAwEAAhEDEQA/AO8kGHbB70mQ2Ku6lYXMSp0oC4uOaYXHBaAuSJxQBIuTSHdkqj1oKTuLtzQA5EA6UXC5S1q1F1aFNwUg7gSSB%2BlJjKAvIorY%2BUs0ywoBuRCQcD171mykjBn8RtZW5uP7HvLhmGXkV0w%2BPTnpUj5SDw98SdB1G/TTbnzNOvHcIIbpduc5xgjg5q42Jaa3OwutOinIZdi/KV5Gf0p3CxVtre7sbvdLGtwh4UxqAU%2Bo70xGo00aqrZ4b2qLAZ7D52%2BtbMyluOWkIetADjTGOSkA8A54oZUR43Y6CkUNuLhraAzPC5UdcEd/xpgT28jNGDLDJE56gjIH40MCWN0YZVwRjPWkBk67KXtpER%2BFAzjvntU31LUTJElyIvKLbISPm461qoCK140hjeGNIvLAIAU8tnpms5RsXFnhHxGtjBqdpexDYyyNGRnkEHcDn86zgOoj6a0S4NzpdpcsMNLCkh%2BpUGn1MzSCqwyKYw8umIyMfMfrWhjLccKQiRF4p2Cw8L60xjgnFJgOAweKQEirQO5JgEYYZGO/Si5SdzPufEGk22fNvkwDjKqSM%2BgIGDU8yKSYWGoPq0jraIRbpwZm/i9lqJTNadO5els4BGVIBJFZKornR7PQwr6CVLsRIAyFc4PQV0QqnPOFmYWjz3cera%2Bl2xMVsIzGnBwHXII79KmUxqGx5B8S0EjwYHW6bB9Mjp%2BtRFhUPojQoDDpVrAescKJ%2BSgUNkWNOE8hapCJsVQGIeHb61ozCW44daQidOlUhjo2R2YK6sVOGwehoAmAoAcqClYCRU7AUAc/4kuy0Uij/j3RtmA2PNk/u8dh39awnLoddKl1Zy4hFzepbNtLsQzyn%2BAeijoP89aEtDWSuehaX5UFulvZooVRgmsZs2jE0FgQJnlmPUmsrFHMeLdOvLi5iNveS2saoSxj4J9MmtoO6MZ7nF3%2Bj3Vpc3WonUGU%2BQTJlt3nY7HJq7EKRwfj2AppsE7DmORJc/7xI/woREj3vSW8/TredSQJIlb8xTMrl23HljHXnvTQiyW4HFVcZghyLhonGCSSp9f/AK9amMlqTAGgkmXHSmMlHUd6AJBQBKooAztev/s8a20b7ZZQTn%2B6vTP1J4/Os6kraG9KHM7nO3SNOsLS5SODJC54LEda59bndokQaBaG71CSXkRocAnvVyZCWp3lhHDbRncR%2BJwKxkaI0LdVkXcjqR7HNQMS%2BsxLAVxggdauMrGUtTzLxvapZWN7dbmZypjUN90buOPfGcVbndHFisVRwcPaVnZHnnxJvLCfwtvt5PnVEDq3BHzrRB8xhh80wmLuqE0z27wlHu8MaWxHWzhP/jgP9a1aOg1hGAORU6iHFUwKdmBgTxrJkNu4bIKnBBHpW5nLcLWUsxikx5qjOQMBx/eH9R2NArFlPvGmBOtA0TIKAY/oKAR594h1O9tddYLYvPcMgdZJUKwRjJHHd24xx0%2BY9xnCcOp1U5JaDhNd3W1CoDH06DPpWbR0cx0mh2wsrXaB7njqaBo0o4vNkWSb5mPQdhUtFG1Zz26AKkaSsDjjoKiwXL0xtZInAdkyDnnmk9CWeb%2BI5LbU0n0uzTzAzbZp2PAIPRfesnJ3scuPwMMbh5UZ7M8x%2BIvh2Gx8NzDUrxBbyYSVwuCh3/IQfrjP41VJezvyn59Hh/MMnksRQalbdeR6F8HNW3%2BErHRtR1FLjUbRPLBIwZIx/qyPXCbRx6V1wnda7nuZbxBh8U/Zz92XZneD3rQ%2BgDigDDc/OcVozOW4ySESqDko68o46qf89qEJMktJfMd4pAEmjxuX1B6MPY0wLqigaJFoAWWSOKJ5pW2pGpZm9ABk0mOKuzj3M2qzyXsoOGY%2BWp/gTsPr3PufasXK7OyMLI0dLsgGDsowOlJtFxNJWzL5YqWWaVlFCYy80m0ds9hUNlHP6z4hsLBn%2Bww3MzDO2SJQVJ/E1mI5IeJ57nUGbUf7VgDnbGRwg9sA1L1KRq2Oo%2BGI3jhj1e3%2B0SHiMSDg%2Bn1qbFanL/tAQ7/A0yg5V2GSPQfMT%2Blb0/iOesrxPRdW8JaZqcC7Fa2uI1Cw3MJw6bRhfrgVs4Jny%2BYZDh8X7yXLLuv1Nm2ge3tYoXmknZFCmR/vOR3PvVI9TC0ZUaUYSd2uoqlsdec07nQYjA%2BaxzWhnLcli44zQSPeNZMHlWH3WHUUxkttMSxjkXbIO394eo9qALSnigDF8YzMunw2q5zPMA3%2B6vP8wtRN6G1NahpkSpZquPrXOztWxaUYwBQNCOVjEsjHBCUAyjr99NLdx2Fvgxqu6UZ%2B96D%2BtS43GmQWY0poMXDJbTtnaHIH4ikkMyr%2BSGaKW0QtcMgJaXHH0X3qtBWZ51oHhJb3xr5kM91ZIrmSNY8EqfTcc%2B9Z8t2aN2R6b4q8MRa3ocunX9xM0TRMgIIVuQVz064NUlZ3MpLm0MWLxn4t8K2zx6laR%2BI7aLARokFvOqAY7Aq/A9AfrW0Z3OWVLl2PQvB/iXSPFujrqejz%2BZH92WNuJIn/ALrL2P8AMVZkawj5PFFgOdB%2Bc/WtLGclqTIO9FhWJU6UwQ94w6YJKkHKsOCp9RTVhhDJJv8ALmAEnZlHyv7j0Pt/OgDntelNx4jihU5S2gGR6Mxz/ILWUzekjTtAURyfu4rJnUi3CNyg9sVBaGzxq8IGN29wo/P/AABouDRzHiHfHrKGMlSyYLL6g8fpWqRlscX8QNbk0bQrhrcGfUrxlhic8lNxxn8P51lU0NabudX8PvDH9meFYbXVrlr28lJeXzTvVQf4c/n%2BdZwfcqb7HaWtlaW1rFHCIkCjAC4AGOwraxlcmu0E8AXPK9sdqloq5xviG03RuRggUWE9ThPhFLNofxyvdJtlP2TVLMyyxj7qMBuz%2Bef%2B%2BvpW0djkqKzPoLHPSqIOYAHmEAg4PNaES3LEYzTRJIopAPzQApRZBtcbhkH8QcigaOS06ZLvV9Rul%2BZHmbYx/iUfKD%2BlZyOqmtDbmkAs3K/xYArNmqLUUgS23d1XJ/KsmaXLEUebeHP8JXJ/CpRbZy3iWJ4tZiD42sCQfXtW8HoYTTOO8W6etwC7g7VmjKEdRtOf51nURVI9K8NW81zpcLSrtkCjcDWUUzSTsbFvp/kyuZFAUN1BGeRmrV0SYviiJv7OnIupkZBu/wBZjIocgSOdkTZYK9xI4OwMVJ74q07iZh/s72B1fXvEnjuZcLcTGxsgR0jXaWP5eWPwatoo4qjuz2gjgVVjO5zPJkb2ySasT3JLdlkUOjBlPIZTkGmkJk9ACUh2MzxBetDZ/Zo2xJPkFs8og%2B8f6ColKyNKcLsxbKSGFTsASMcAVFzrSNFbgSwRhTn5s1Ldx9S/vzbSDuRj8yB/Ws2WjSk3i2%2BY4G5cD8RU9CnuYviqPMkBYHehJH04zWkNCJI5nWbWbU3g062whmOGf%2B6MHJ%2BtOepMdD0HSV%2By26RuxcqoBJ71BW%2B5bWVCxx/d9OtA0jF11lCImNxlzHt9ahxuUjzz4nag9j4f1CaI7ZEtn24PAO08/nVxMqj6ncfBLSItG%2BGGg2kS4L2ouZDnOXly5P6gfQCug4mdpigRyFxZWtxceZPCspXoHOVHPoeM%2B9a2JZcTAAAwAOBVEj%2Be1SxhnA55pFJnFaxcvf6nOsZ4V/LX3wcf41lNXOqloirPDMmeCEU4z/eIrJm61NjSoHQKXzSuHLqbNrEXUEnAdgPwHP8ASky7F66cmO13Hrgn8Bn%2BlICtfjzponkOQind9Kokbo1pbJEZ/KUyMc5IouFkX2kABNIkSOUYzmkNGRqgMl1bNvyCCQBzj600UcJ8TVC6TqDuMxR2kzbQOp2HA/z6U%2BpEoqx6H8Jd8fw18OI772/s6E7s%2Bq8fpXQjgk9TqcmnYnmZzUqud2xwpz1K5rQTHJ90AnJ9aVwJlximBj%2BNtaTw94S1PWm2k2tuzoD0Z%2BiD8WIFRJpK5UIuUkjxLQfG0cPhqC4uJw1zLIV56k%2Bv65rJSujv5LG74V%2BIMGs6gtpImcSbVHTPOF/Pr%2BFYylqaqFkeuW6QyQjHDNxmgRbCKgAUYCKQPc0WHcZfkKyL/dTP6UAVz84EZ/jGCfamIkkk2JhRgUANEhI56UCsNMqomCep4pMZGkJluRIzbVVQBjrQgZwPxV3taLpln/x%2BapMljBuOVDSHaSfbGelNK7MqkrI9b8O6bDo2hWGkwMWjsraOBWPUhVAz%2BldKOBmjQI5hizghHCHPXGa1E0PGM1Ax4NAHkX7UGqtF4X07Q4Zdsl/cmSQf9M4x39tzKf8AgNY15WidWEjeVz55nWeOyVhIXjjcg7TwpNc0Wei0bXhC7kh1G3mhJDblwR25rV2eoj6t0yVlt4dxORGK0cdDmvdmvb3HykH0rJqxaIbhzLulJ4J2r9KRQ22OSz9yePYUAOuSAnJpiHw7SBjJoAJIBuL459TQAzzNi54wKAZx1xD/AGz8WPDtkqZSw83UZuemwBY//H2q4Lqc1Z9D1hDzj%2BdbHIPzQI5GaXYxPbParQ2TxShkDc8/rVCJQcmpYHzb%2B0bqH2n4kC0Z8pZWscYXry2Xb9GA/CuOu7s9LCQtC5xdrZRPAYY/njnU4HcnI6D1HNc97HZa56d8LPhsbYJqd%2BBIh5SJh6Hr/n0ooylOV3sKq4xjZbnrkfyKUxgjiu%2B5xJDra55aNz83apkrlouK42gViWJAx2vg9DimISRi9ADldl6HFADvMPck/jSuOw2VkjgLhNzngljnH0FMmRzfw%2BLyfEjXLs/OYbCCPPf55ZDgf98CrizlqnpkU0LuVDYcdjxWiZg0Tk4AqiDkAcysCvGTnmrW42W0UFRVEkyjj1o3GkfJPxhmM/xZ14HnFwFH/AUUf0rzq3xs9jDfAkdX8GfC7apqMd9cxSfZ4Tli33XYdAPbH8/askrm0pcqPf7cLCNgGEA6etapWOd6kEsCyZbIBNXdisZ%2Bo2MnlF43AYDj1zRzBYis71hIsdwCrDr9aQFm3myZQCOZCv6CmgZZVgPloYIljG7tigCYQDOeKQyhrMqxQsFxwKCJGX8KtPe4uvEGql2QS3yW6cdViiT/ANmd61iro46r1O/NhvQAyMMcgjAOatRMuYtyW%2B5EUMBtq7CucuoBkbI7mtBMnXgcDOBQIljOF/WmCZ8ya/4cu/EPxt16zt1IC3rGRyeFXAya82trNo9nDu1NM998PaXb6TplvZW0YSOGMIvqcDqfc00rIlu7uaLg7RTAYofbu7UDIpSCuDmobKRSuYFdSJF%2BjDqKm4WKMSvBq0yM4KzRpImBxnlW/kn5mqjIlo0Y5FH3iCfatCS7DMWXCDigCwjEKSfSkFjB1pzscdcg0yJPobvwrtjD4NtpWGDdTTXX1WSVih/7421vHRHBN3Z1eKqxmOI4FMDlCo3nHrWiGTIvfFO4Ds46UXJRxGkaRHp/ivXtSIBlvrzzCe%2B0KuB%2Blcc42k2elSm3BHSpLu%2B72rNmyFMpzyOKRTViRnyvOBSZJXcgnioLIznNIZUjgju9QkO0YjUID78k/wAxQtxMuiz5wK0uQy1BD5ftTAW6kVF6jmmhNnL%2BIlku1i063JFxfSrbxn0LcFvwGW%2BgNaRRz1JWR6ZaQpaWcNrbRgRQosca5xhQMD%2BVbWONu5OWb5QPXmqFYcZBnpQByoYtI42kAGtED3Jt2BQIAd3fFJoDFMTTapcAdd/9BXNU0Z20fhRrW9koj5OPUmsTrWgr2a/wyDFId7kT2Un94GoZOxXNvJE2CuKkLkd2fItZp2GQiF/yFMaZVsYzbRRqWy5GXJ7seSfzpIpo1IXAIDD8RWiIZYkZMdaYrGVcFmcnPAq0iZaDPBdn/aPie41R/wDU6apghHrM6guf%2BAoQP%2B2jVrCJx1pneDitDnGThmjIQkMSAD6c0yr3JTswNwHtQI5EMASSau4NaiyShVDE/KOppNgkTxHKjI5o5hNFGNlh1iYE8sA35iueodtDYtiYy8s%2B1ewFYHVcuW9uki7kIwOrGkxtivEVbGSQO9QhMe0H2pm5CkdKdhHN%2BJJRIzaVbH5mX9%2B39xD1/E9PzqWVG4sjGRVlwN3OceopFlqFDJGGGfetEQ9yVoikJJB%2BlWiWzD1y6mREsbONXvLpxFChzy7dM%2Bijkn2U%2BlUldmM5WR2vh7S4NG0qGwt2LhMs8jD5pHY5Zj9T27DjtW6OGTu7mlVEid6BinkUAcZIxyRTKZLEMrhuR70Ej5pVt4zLIdsaD5jUt2KirnM3k9%2BuqzXkUPmRSqoAZgpXHbvXPOep3UoWWpat5tUuSoEMMYJxgyEn8gKz5rm1kddZxmCzXznBIGXJ4WkMxdY8WaHp0jG4vkIHVVOaErsmUktzGuvGer3zNbaRpMlhGVz9qvY2UuOPugjB6j1qpRsiYyUnoP8AD42Ry%2BbKZZpX3O56tWSNkXoysV75Mn3JeUPoccj/AD70DJLa4eGVkBxjmqiS0JqmqLDas7yKB6ntWqRnJ6FXwHBJe6xLrl4iD9z/AKFGZP3kaMeZGTH8Y6HPTPTdWsUcdSVzvgcitbHOPzgUAA5pALQBwyt8xz60zRq5bhPFDI5WQ6zzpkh9GUk%2B24VL2NKaszMDLIRvQOOiqelc7R2plDVdWXTYndLiMTYwIIUBZj2yewqGikY994pvDpk02owWw8tCxJLsBj0BbBNXGPM7ClLlVzY%2BF3hmO80xPEev28dzdXbCa2ilQMsEf8BC9Nx65xxxXVyKJwSqOZ0vjBwl1ZMxySsowe/3a5650Ybqc3plxu1KYZwmBgepyc/0rlOy5Y1a6e3ms5T/AKsTjzG/uqQefpnH509yie%2BkAuFkjbOOuPSq5WZ8xU0GwPiHxI0dypaws1Ek8Z6SMc7EPtwWI9AM8GuiEepy1Z9D0LykEgcIu7GN2BnHp9K2OdFiLpiqIZIRzSEL0pDsHNAWZw38Z%2BtBoWYWAwM8mkxWJLuH7RZTQZx5iFc%2BhIqRrQ5SaF5rVTJ5iSoCrnphh16VhM7YNWOYszi4miniyySNiVj1JwR%2BQ/nWaZq0YmumPUvEOm6N5ojtbu6jSZ2OAF3c9frn8BXXQS3OTEStofQsCRxoscShEQBVUdAB0FaXOayMLx6fLsbOZT86zlRz6ox/mBWVTY3oaOxxVtPnUVkbKiSRlbHTOFNcyWp2PY0rycSXDwyMqogKneeP8mp5XcrmRT8PXDy3t7plqZL1rdkARBwu8hQpc8AZPft9K2jBnPOqkeh%2BFtJ/sbSvs8jpJcyytPcuo4aRjzj2Awo9lFdKickrydzW4JoJ2I7VGiaUuFG5yV2knj3z3o2DcsK2adxco%2BkWNzSEcNu%2BY/WncZPDywNAFxSKgDF1VY4NS5zsuF6Acbh/9aomdFHY4fxOhs5z5pfyJmwpUEkOOBwOTnp%2BVc0o2OyMjjPG9rf2kMV1cRmJtylT6c114d9DkxS0ufQfhHUf7S8NabqBYM1xaxuxH97bz%2Bua0lozkv0MD4p6pHbw6bYmRUkmlaUZPZBj/wBn/Q1jVeh0UFqcdbxS3U7qZSLcOHLDgAhcZ/KsYo7LlDWb3Ub%2B6j0PRFFxeXBxCFHXHV2PoB%2BFbwjc5pz5Ueu%2BH9AtPDHhhbWzUebH5c11M3LTupBd2PfOG%2BnatGjmep0gOeexpoQ4YFMAYZHWkAmCo65pMBUfIOKBDsigDhjgsc9c0iiSJsHFGwFyIgjNFwOb8R30UXifT4JGOAjNg9MnOP0BrKe500Fpchngt7uKLULho47e3kM67jjJ/hP8j%2BVZs6DjviYUudJkWNMyEbgMcgZHNOlK0iK0eaJJ8NPHNvofgNLGRXub6OdxFGchVQ4OSfTJPA5%2BldFWaWxyUqTe5UlnvPEutm8u2NxPkKuBhY17Ko7CuaUmzsjBRRua866bYvYh9kaQeddOpwxX%2B6MfQ5qdW7Ip2UbnS/BHRIrTwymv3MSNqGqZlMh5ZIc/IgPYYGT9R6Cu21lY8%2BTu7noDoksTRP8AddSrfQihkkWms/8AZ9uZQwkEShwRzkDn9aExlhW5psCTdSEBNADXI6jr7UgEL8DpQI4gMN5%2BtJlE8Y70AM1C8FjZvcHkL0HqaluyKhHmdjj7OyutY1h7wZmuCC3B6KBk/RQB%2BVY3bO5RUVZDbh0XWlTUZVaaFc29oMlVHUMR3PuelZyuXEpeJ8QX63Uy7w0Zd1AyEH8IJ9zzUpFFCy03SbDQZLm7CBIIi8h75/8A11au3qQ7I1/CYj02zgEyL51xKACeOxY/p/KrtYncwfEl4H0fXb92DJMzRo%2Bc7yf3YA9s5/KlBe%2BKq7QPZ/BNu%2Bn%2BENHsphtlisolcejbRkV2XucFjbBzUiHdsUAVZbiOO5SF3CyOCyqepAxn%2BYovYZajfK0bgSZz3oEA5BFAhhhTAG1cfSgZx/hnw18QPEeiW2uaV4d0prG7XzIDNq5RyuSOQIiAeOmafKUayeA/iiv/ADLWif8Ag6P/AMZo5QMH4ieDPiFY%2BEtQ1fVNC02Cw023ku5zb6zucrGpY4Bh5PHSk43HGXK7mSmkahp9tDFpF15RcFZnJJOzHT/ayBjt3rJwNva3OWmg8QwawdVvLNUWc4lkdApjXnaOpJYgbm9zilKGhcKt9CS4uLeSKC181XW4k82Vmb7qqR1%2BpwMen0rJKx0XuVPihcJa%2BEbe3Eao1zcDew6ldzN/StIpXMajsjc8RtBLp8cbBY/nVgScY6dPwzSmtRwkrHKWti%2Bq%2BHvCWnRAeVf6iFk25JVVZ2b/AMdyfyqoLW5lVl7qR9AhhnoOK1OYlQ07gP301qAxgjYJAyOme1J6gKCBS2AejUXAeGANUA/cKAO0%2BAX/ACR3w0f%2BnP8A9maqApeLPig2h%2BNtU8LxeHZb6bTdCbXZZEu0QNbq%2BxlAYffyCcEgY7igCv8AEjxFY%2BK/2Z/EPiXSxMtnqXhq4uYRKm1wrQscEetAHmkQBiUkZ4FZvcZW1zT11HTJoMMX2MYwrbcttOBmk0CZ5PPpz6bcXEl7b3SW8P8Aq0hTc0svlsyj/d%2BXr2/Dlcpqqli94e8JX3iyPSdV1G6M%2BnJJC4VydzqA4kGPTIRR6jJoUbEym2d9qHg7TbyZ5y8kbOOVwGVT04B%2BpGDkY4xQ0HM0J4c8HWujw6RGt08x015ZAxXG8yR7PXjHJoSJbudYrheppiJllB4FAWFLnPBFO4gD%2BoIpDsKpyMigLDwxoEOD0APLDA5oA7r4Cn/iz3hv/rz/APZ2rUDh/id8NNd8S/E7XNfj0iwvtOvfCZ0a3We9MLC5MpcOdoJCDP19qANfxjpGsaD%2Byvrmja/qa6rqln4ZuYrm6VNqyMIm6DA4AwM45xmgDz2JpBEpVQwwOM1AycZboCKVwH7AxBZQT6kUALbxRW0SxQRLFEv3URcAfhQBIXA9/akBJjdjAoAc0XTAINIBmGH8RAouOxNHIR3JpgSJKD2zQIeJEUdlFAxwkXqQcexzTuiRAQWJB49KQD6BnoHwC/5I94Z/68h/6Ea1EdzQBxPx7/5Il42/7AV3/wCimoA8a/gX6VmyiVfuUhE0NAgegaGn71AyzB0pMTJ6BEE1NFCp/q6QdCW36mmBHffdoAfa/wCqFAiwnWgEO70DAP/Z'/%3E%0A%3Cimage preserveAspectRatio='none' x='52' y='121' width='131' height='230' href='data:image/jpeg%3Bbase64%2C/9j/4AAQSkZJRgABAQAAAQABAAD/2wCEAAUDBAQEAwUEBAQFBQUGBwwIBwcHBw8LCwkMEQ8SEhEPERETFhwXExQaFRERGCEYGh0dHx8fExciJCIeJBweHx4BBQUFBwYHDggIDh4UERQeHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHv/AABEIAOYAgwMBEQACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5%2BgEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoLEQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4%2BTl5ufo6ery8/T19vf4%2Bfr/2gAMAwEAAhEDEQA/AMtIe5yTXO5HRYnCAdqSdxjghpoBGGG6UyOohXJoBiiPnqaLj5RwTHNAJCBd7hQMk9KzlNR3NYU3LYvNLp2iNFLqTRO7AsqBSx49e1cNXF62PVw%2BButTEvNSN/qDXGFgty%2B5UwAenU1xRquVQ76lCMaTRFc6vaxXK26/vJGOML0r3Yao%2BYqNJ2NNYyVBPWrsZkgTb2qWzRK40x5NQyrCeWe4oIkgMdAJWQhQ4H%2Be9NodxwSkMds4qrCFAOelVYLBsBNArDlQd6AYnl/jQJlbVJxa224Y3nhRWc5WNIRbNHw9by/2b57LvmdSy8ZyP8gV5tabb0PZw1NJK5w%2Brx3uo6ncvKryuhCBjngg4P8AujnH4VwTdj2KcVbQXV9SSwh%2BywhTctEN7DkKD6e/FdmDw3O%2BZnlZljPZLkRg2IZ7xMliS3OOSa9u1j5m7bPT7aMiBBhs7R160HQkkTeVntUyQxDFj0qeVjuIU9BVKIrCBDg8U7ILAyYA49f5miwrDCPako2GKAT1piHBCaLAPWM9KGMd5VArCrGc0m0kNK7IbjRmvG82Z1SJRx6k159SpqehToWWp1ugW8G5UYbFRMDA7Y6Vmkm9Tqu4o8w%2BJlxF4W1GCK0h%2B13V2XaKENgkZPLe3OPzqJYXnZr9ddONrHI6bpl9LaXepahIGuZD5jqpyFGen4A4/CvQpWhojx8TepeTOx8FaHD5EeoSDfI3K%2Bgrds5YRsdeIhnpQ2WL5Y9KAGmPJ6U7hcDDTuDlYRoBtJFK4rjZIuR9P607i5its74%2BtDGncdsPWgEmPSNieaVxkyx80uZC1HBB6UrodhiNGJSG%2B6p5IPf0rixFbojuw1C%2BrJoWeW6jaTIRCCiDp9T61wRd2d7skdDpEjXETtu3EHBx2rpRnzHnWuabHrnxH1CZxiOwtIrbe3Vicvx6ffonWcUZ%2Bz5mM1DS4LK3eaPDRhWRxjIwR1pUa95ak1aFolrwA27TJLZj88Dnj2PINeitTzLW3OkCYqrMAK1TATZQhClQRxQLcQJTsRcc0Ywv0/qaBspCP2ouOI9I%2BfT2xUtlkix0uYB4TilcCC%2BkEMOWIAPHNZVZWibUIc0iOwtmuZFYoywj7ox1968ub1PXikkXZJVaUxRISF4z/hUwWo2ron8PSzWt7IhjYBmJx27cfy/OutPQ52rMz/D0FtceIvEMtwAFa6RByR0RQawna5tBaFvUNMEtrLFHHttwpA9xXMpWlc3aTVmc9YQw6Tdh4lOJBsfnOfSvQo4l31OGrhotaG/BPFKAySA57Hg/lXoxnFnmypuL2JsHvWhIbaLEy2E20WMxdtACleB/nvQNlcIKyuaCqnpQA8RnrT5SZPQr390lpECfmdvuoO9ZzkomtODkY9xffa7lE2ACMZIJyM1yVql0d%2BHpcrNWCVzGIslQeDj0rlO0v2b28UmGUYUClcpIWyvF/tzbxscgj69/5VrB6GNVFTSLcp4v1Gz3fLMxmA9cHH8sVjVjqaUnZHTatA62JSJgrHGAf4vasuVlXuzlNWt5jy0Q%2BduNn8I9M1STRqkik9m/zRvjcwyQo5HvWsZNGU4JktnYarGCizSIoXIY5ZcV1060jhqUIlqzvZEma3vkWN16SdFYf0ruhUvuefWpcuxpqoIyORWhzi%2BXwaACWPBH%2Be5oAgC1lZmpLFECcVSdgNBE06yspbrUyyxqhIweSazqVFFFRpubsecyXLapfy3sbfulysfp%2BH0Fec5ubuz1I01TjZFzSLEmTLFuT/nNZyd9DaCsjb8g%2BcqIOopGhBcpIkB3ZBAyay6l390hgl8m5tZVz0INbp2Ri1dl7WfOtpY9ZtMl4wJHUd1HDfoc49qco8yIUrOxPJrcl9EGhiDNnKM3QfrWDdmbxVyhqviHUIr1I20UfZMfO5uBnPqFBIqm0OzMXVvFWrKCbOxEUQPDy4Y4/AYrSm4vdmdTnWyOl8E%2BJba5tBDq5kjl/hbywVfPbcOh9jiuuKilocU5Sb1Q/wCICW1x4Z1KeGP7lq5Vgeeh/wAK1huYVLuLuReB2ebwnp0kjF28rBYnJ4JFdZwGyV4oAHQHbkdv60AV4YXcgKpI9qjmNTVg00RWr3F0SqKuamc7K5UY3djznxXerqOpEXUkotVxBDFHklznngdfc15M6jqSPXo01TgaWkaTHFEiMCvGFQDGBWqhZGbldmrdhLWNUt1AZupxWVTQ3p6kukxSyMJH2nAxWSu9zZqxFqCxtH1HzZx%2BdMa03OfxKt2ICTjcGX6f5xVEM6iNWexEZzuQZWtIS6GM0cnas1vcy2e1iEbjaOg9KwqrU1hIsSQqx%2BaJQG4DPWFmdCkmSxbbceXd2bFcdcZBq4RInK2xnXdrawTAWMp8qY7Sg6qc9Oa7IqxzSd90autyf8SJ4OvmLskBOMAjH611Q0scVVFj4bO0ng6y3AApuQ/gxrvWp5ttTpCnaqsO6BkyB9P60rCNnQrjTrWMeZFmQ9WNc5rdEviBvtmjXFvaqWZsEAdSM9qyrRco2RrRajK55RbWYj1iQuF8yE7QeuD3FefGPIz0%2BbmR09vgR7%2B4A/Wtua5PJYgdC8258%2BuDXNN3OqmixazmNzCmMg/Mf8/Wp5i5IpTgtpgZc5AzxUxkKSM%2B4jltXS4aPzY1x35ArSxBt6HeJdJ5gGNucg%2BlOGhEomfbWjx6zeXKlGUuAyEdBtHP86mo7mkY6GpcW0U8WxowMisrhsRLkQCJ%2BdvH1qUx2uYeqPBbXENyUA8uQE8dBXTSkRUhoaev3UWpaRKqxo2xNyEjqOtdqkmccoFH4Vy7rC9s3O1opy6Keu1uensf512Up3R5lam4u52oj9a1bMhWjHHFAFdeOmRWCRoJdX01pZyTI7BlHyg85PQU5%2B6iqfvSschYIySO0v3ydxLHqSeTXlSvc9mmtLGtFKOh49sUk7Glh7MGbdnoKiWppAr2zB7yYg8fLn8hWbVja1xbZXCvA/ChjtPtUxTQpWZDcNdrAYSqy5HynHSteYzcSt4bsLxZ5b24uvs1pHkvjocdvemlfUV1axqac/mTT3CxvGszZ2ucn/61ZzY47FyUHaSKzJIhHuTI696RpFamfqFkshCyfdbrWtJlVFdEs0KC1CRrhSoBGO2MVvOTS0OZQON1WZ9EvYtTtYwZ4pBsH97P8P49PxrbBzbmc2NguQ9diG5FbaVyAcHtXr2PFZI6dPp/WqsTYzFzWdjexS1xsWar3aQDHr3rCv8ACa0V75nSqpOxsAlcg%2Bprz5HqQIcFVJzkDGcVmjUV5CFwvLZqS4sji3R3iMPuyDB%2BoJ/xqZI1vZFm9jl2CRSfl9KaMk2TtE5t/lJI4Iz/ACoNbXLCIr6XJHggYxinfQycXcZAoAUA8YrGSuweiJZM464pqJJWiVzKfmO0daHE0jIlZRIFJwdtVBW1Lk7g43ZHU0pSuChY5jxNpTz282JEyFyFHXPqPcda1wzcZnPioqUGjv8Aw1etqvh%2Bx1FkCvcQq7qo4Vu4/MGveT0PnWtTSZTxj0/rVBYywvpWZSkY3iOdIprZGP3SWOenPAH865sQ9LHTQ3uQttmjjdRyDyK4Wro74ysxiqHglT1IFLlsi3IRIlKkN1FLkKjMZIBhS38LDP48Vm1Y6YSuWN7GJ1Y/MvBpFOKHW8/%2Bhx5zyoouPYjlnYwxomQWfJ98UXsII5wihWzwamxLiSi5VlBzkngCnYnkYGTjavBbrRYIqw8FsbRxSZrfQbIxjTC8selNRsZ89zH1UStG69CwxzWsH7yMql7HWfDRY28F2Sxk5QyK%2BezCRs/5969qL0PnpLlkzpHjxj6VVxXMZEqRI57xNGjX6uSdqRYb5jjk8ZrjrvU7qC0M5L6JcqhJHA6VhsdSVyI6gpc7NpbpgdazZZLuutm4PsPHUdfY0XsUo3JWb72dwzjr9ayerN46Ekbh2YD0/pSZvB3HIP3Kr6Nj9aTKY%2BNQ5JUZCAgVJITRZGCOCOlHNYpFCNJYpCMEjPBqkwdjQiTGPWpbIJ%2Bi59KVwZErAng1aZm1Ygu4vNYAjAPGauG5nPY1PhlMYLnVNImPzIy3KDgZDfK2PxUH/gXvXr0HeJ4uJXLI7cqFwCAfxroscvMc7O4gheVuiKSaxbLjqzjr5Zr2UtKxEZYsVHQn0%2Bgrimm3c9Km0kZOqanp2nWcs0/y%2BQhJCnPOcfickD8awk7HRFc2xxMXjW2lvFkgTbDkZBHzcn1/D9awczojTPR9GuxqNgkydCd34U1K6G1ylloJHfngUmOKuSrbtDGzA8mpubxVhUDBEB4OQf1o3KLFiAAy8ctn8zTREizJGM7u3FJolMrmIYzj3qW7CvcQAL8xNIEQS3IKlVOc1aRVx1lE2SW/Ck2JtFiZQF9hVRZkyrpV0LTxnpt0SQswezf0%2BcAj8dyIPxNephJ30PKxlPS56VMpyvy9RXeebY4zxZqFtpuizT3UmxDhRjqSew/CuarJQjdm1GLnJJHneteONOt/D8k8bqtwY2ZIz19s/pXBGvGex6iouO54fe6/qF400k8rtvYFhnAB7cfjWc43Z0U3Yk0ovcT7I0JLEKPr/nFcVeSitTtpRufSXw%2B0h9O8KW8VwNs7IWYHnqTW%2BFi3Tuc%2BIkueyNwQxjGTWziKLLa6f50RC4yPyqOQ0VSxRm0%2BSM8qcZ44qHBmimmUWV4YzMQQqFSfoDzUcrLeqNDGYF5zk9as53oxpXtik4gtyu8bTNsXhe/HWs7Ft2BrOKP%2BHmrUWQ5XHRoxPA4pcpITxtsJ6KBzVqIOxiawrWyRXqnL20qTJ/vIQ4H5gCuvDvlkcmI96LN/x14yv9J1K1i0%2BNZbeezSdWJ/vFsfoBXpylys8qnC6PNv2gdZm/tOy0qGQeXDD57pnq7EgZ%2BgX/x4152Ol9lHbgIK3Mzw7VLuaeZjI7YA6Z6%2BgrCjTUUd1SV2U4S0kyRRoZHf7q9ck4AGPxrScdLkRbbsj2z4X%2BDBCovtUteWAaMHtweoNeW6Tqy12O6VRU42W57Kkq7FUEDI4H416kLRVjgbu7sa/llD7e9Eo9S4z6GVe%2BKv7MHlWbQXbLII5I2bG0npz2rPmsXuxI/Fd7dGZmtobWG3XLvIQyjB2/ez6jtUuQ7NE%2Bhai%2BsWgkbTJBDIuPOT7hIODjPWklcpza6l2yQfZ44yclBj6jt%2BlFrDbuPkid32qOnBNDQJ2HlYrdBxlj39KSihN3K75f3c/lWlkRdliKIY3AY9B%2BFKyFcdMkXJxknkjPT0p2C7MfXLcPDllJU5yOtawWpjPYo6okNzpegPJEZGXSIEJxnpkV3Vd0cFG1n6njvxZ1BtR8c6rLgAQzmFQBniI7B%2BZH615ld80zvw0eWmjzm4iee/ji3KryyBQW4UZwAT7c1rHRFPVnt/gLQNa0WGHT9Q0XRZbqzeSJZTCkjSI5DAs464IG09qwqVUWoaaHf%2BHbLXEknttRs4J0C5KxPsfaDkDHrjuD%2BFZxqdLA436m5p2gLPbeZBezDH/LOYBypz03dfzraM%2BYiScTI1eLULGbyriMISOCDwauTaQRs2UrFbaaZ0ulSPzl8pmCDkE9GrCWpstDR0/wAPaXbamLJ5XFuYCscbOShJLEjBJGTvY%2BtSld2HKXUzPFo8Q6Ndx2lpcR/2VKuVCjEiMOqk9MdxwOSatppaBTcZS1LHh66bb%2B9QyM%2BNz78H8O1efOvKMj0vYQcTcvLsW8aqdwOTuHU//XrppVubc46lJxK3ni4O8HIPTFdO5zN9CVVYudnGO5pWdykXgCqEjk/TFWZ7lODc7EE5z/OhFS2Haiu1MEc5wK3S1MJPQzrNT/wjuhEnltLgY4/2hn%2BtddXc46WifqeA%2BOY5x4n1uHcCx1C4XB/66Mf5d68usrTZ3UH7iNL4beChc6l/aeoxtsjYGBTg/MO59qFJyVkW9Ge7%2BC9H055pr0IWucjfhznA6cUKkmTzs6qV7FZjLFMiXESDcrMANvo2OR9afJHcLu1hlpqml3lvJJYqbW5SRkKyxkbnHrjgg%2BoNWuXoS1LqZ/iuR77QrkSQvHII2ZWGDsIGR%2BoolK4RVjzXw/JeapAJIreWRs4IAGPzrHQ3TZ12h6bqtpci5mhhmhAIZJJiHGfQj%2BtJbhLULfUdHt9Wni1K8zKwISKfpjsOfatFON7Mhwla8Simm3Fvq7S6eA1tKxaNR90cdPauCvTvK6PSoVVy2kO1mK4SG2naXErtnZ1wKyTcNzVxU1oUZUuob2CWK48qQjmJh8jn09q76dRWPPq0nfQ3LG8ZgjPEYyRk5H9a20MGrGkbpDEOjcckdqLgkU4LhIpgAMDd654pxaTCSYniC6iisZ7xslIImkOO%2BO1dMVdnNN2Wpi%2BLtWj8Lw6Do9/FI11Do9uJSi5AYbgR%2BBFddSLb0OSErXPPvi5oE2n%2BOZbxYWe3vh5ylVzg5w2f%2BBE/gRXn4qnaVzqwdS8bHZaZFBp%2Bn25L4j8sOFAyzZGawVoo6EnJmlousy2VwhtkSNn%2B8n%2Bz7mqVTWxTpWV2dTd2b6hfxTSR7CAA7g4yh9/1raUDCNQt3EOnaYnnAJsQHc7thR71Lgg529jznxR4s1XXNYm0fwm6fZduHumTd8x%2B8UzgYHTJzUSa2NIRfUs%2BEdE1LQtOMTXazksWyF%2BYf0Nc00%2Bh1U2up0tu88pG6XJ9G7VMbmklEr3B02QSNqK2uzoHmwAR7ZqiWuxy0E3iC%2B1gHwhex2%2BjwDbNPOnmwyNnlY143EeoIA9e1WkluJ3SOq%2BxrdrEt3KBJjG9RgZ/PipdCM9wWIlDYnfSLKMpJcXSskfzAE/59KpUIrqS8RJ9DP1jVPDsMUggvlubnayxwW7eYSSOmRkAd%2BvarfKlozNXlujR0azuZNNga5GJCgJwOelTG4SdmJfab5ZBAIzyauwue5UEDahrWlaQVylxc75v%2BuUX71vzKqv/AAKu3Das4sS7I9E1HSdMvpllvrJJ5VXaGIzxk8fqa7kjzlKxxnjjwzD4l0RrQlUuYz5ltI3RXxjB9iOD%2BB7Vz1oc6KoVXTlc4PwyqjS47bUDJFcW37koUJ%2B6cYyAcen4V5TpyZ7aqRWx1Flpts1280gYll3AnsBgj6/hTpU3e7HWqrlsjZ1LVE0%2ByaVniKIm4g9K6JTSOWFJyZwN3can4nJ8%2BUi1U7li6Lx6kDk1zzqNnVGkkbmj%2BGNVWBY7c22nw/eYrCGkf6k8D8qxcpM2UYINZeDSrj7ENSubm/I3GK3hUsvoXYAKg%2BvJ7ZrKdTkV2zenTUnojPksNY1W3a3v9WKW0n34bZAm4ehYYJHrjGa4/rMpOyN3SjEwn8I%2BFIfEK2ki2vnlVP2XcPNlGD6844Occ8fjXTBzav0Mnyp26ncR3XlxpCDHawxKESKPChFHQAUnUd9Q5E0OhT7VIq29xGFc8DzAzMe%2BPetI1XsZulFamzBodtJYzI0YMjIyMTycEV0xV1cxk0mVrTQDp4XZHHsHQBelS0yuaOyN7TV8yEpkhh61rTVzCpoUNZYLMIjwwGTVszGeCrXz/EtzebRi0sxED/tSuGI%2BoES/99134eNo3PPxMrux3Dg5GO9dByIwApFSyVdGNq%2BiRT3QuokVWdsSgDGf9r61hUp9UddGpbRkOtpo%2Bm6aJ9U1AWETEIJVk2FjjoPU8GuSrOFNXm7HsYHAYnHVPZ4eDkzC0ay8PeJ7qeez1G6voLbCsDuCkn1JAz9K5YVYVW%2BV3PTx%2BUYrLOVYiNmzqrSwt4Y0WC3SKCPknb1A/kKprojzb3C9vQbN0s2Jc8CQjCp757/hWNWVomtKF5HKCO1id4rWPKlsySMPmdvU/wD168ppyZ6WkULeXJghaRcAIpLMeigDJJ%2BlaRh0RMnfVnP/AA0tbHV/7X8RaobeVtQmS3txJ8zRQRE5Yd9zFjj0A5r2YuFGjyPdnjz56ta8dkdlc6F4Tm3SyWkYBORujrhlGD1O1SqLQpWFlYWcsk2mxJboxx8qY3Y7/X3rJyUdjRRctzds9ciUhZ0dWA5cLlW9%2BORXTTro56lFl9de06b5PtMPoN2V/nXTGpFnM6UkNW6VLpTER6nHQilzWehootrUoeIJIw097K22GOPc7DsAMmto%2B9IwqLlidN4JsmtdAhkmTbcXhN1OPRnAwv8AwFdq/wDAa9SKsjx6krs2yoOOKozOe60BYpa1qNjpOnS32o3KW9vHyzsfyA9T7VlWqwpR5pM9LLctxGYVlSoRu2eO%2BONX8UeLrBTYaHejQTJujITMk5HRu%2BB9OPc14ThUxz2tE/TcPiMBwlFPm9pXe/ZFzwVrviLwz4fGmW/w%2B1OUhjI8oLAyse5zGccYGK9DDYBUYctz43PuIpZti3XlotkjX07xL4y1K7Rn8C3awbmyZ5GOSAcBQQg69yMY9a3eHPEWJsW9V1i68kGeMrORtaM9EPI%2BX1HBx7V5GIpyc3E9fD1YqCkRaW/noHOcjg%2BuaSoWKeIOd%2BJklxLJZeGLF28y7Vprzb94RqCdv5BiR7V0QoKKvY5quIb0Op8I%2BHrO00%2BJ2jZjsGz5iOK46j5nqdFNcq0NifT7KaXY8k6FRkI75FQ430NVJoi%2ByJ5SLjIRsEfWn7NOwKbNSKxsrdDI8SY9xmtlTijByk2TJDp93CNkMLbeoCgY/CtFFWJcnEjS0SOb91u2HgqTwv0qoQdxTqJozfEUUd2YtAi3zXd5PEGiU/ciDqXLegwP1rtw9N3ucOIq3R6btGeOB2%2BlejY8mW4MvvSsTc55UoG2ZGueGdI1rULG81K2Nw9kWMSMx8s5x95eh6A/hXPXwsK0lKXQ9vLs9xOX0Z0qDtzdeprhAABgYAwK3SSVkeROUpvmk9RSgPBA/GmTYzdU1e3tvMt4iJrhflKjlUPox7fSsalVR0N6VBy1OWudOtr0%2BfNeh5d5XanzYJPT68c1xNpu7PQTaVkYHiS11uztja6aFilaQB5y4ARCOOexPPvxWanG%2Bpo4Ta0N/wAO6D4b0VLtoNRk1TVrq2eCS427gARzjsO3fOBXXzw5bJnI6dTmu0XElYWyJt2MuFK%2B9eVUpPoenTqK2pHd3n2eykmvZYFt4/vebgAfjXJKfJ8R6mEwlTEzUKSbb7Hm/iDX9a1adW8JrqCWsZETuigLIxYBcZ56muN1ZTfuH6TleT4LLqbWYOLk9bdj1Dw8bnSdJstKlW71nV2wZSJN3zOW53McKg2kAkjp617uFw75Vfc/Lc8x9Kti5yorlj0XkbyQa0IHln0coFPEcc6O5GMk46fgCa7PqzR4f1qLK0GieItZlb7VOdC08MVMUJDXMoB6luig%2B1awo23Mp4i%2Bx02g6Dpeh25h022WLccu5O53PqzHk11Rikcc6jZpHgVRm3oB7UEmEBWdyxdvtTANtMq4oX2osB5xr2lahpLTizkbbcTPMc8lmPfnuK8fFRqRldHtYWdOcbMzLNmtrFJTLc2/707iykhz35GccE88VyS5mrnbBRvYtC5gj06QP5Vw02Mt5h%2BRsHnb06cVHPGKOiNNyZD4dvVtnuZbnmFAOcdTz6UUK6uZ4ihtYuHUzcxS3G%2BK1KoWiim4PA4J7gd8V1e0k07bnPTp01USntfU5vQdGufFMa6t4kv47mEcx2kZ2xoc9Djkkf5Jrhhg51Zc1U%2B2r8S4TLaXsMrjbvJ7nTqLe1ZY7VUjjTjywMBcegreOHjCWh8pXzGtibyqSu2eg%2BB7K3j0pbxWWW4udjzOOzBAu36DBx9a92kly6HzNeT5tToD7etbHKOXOKB8zACqJDqKBJisBmgZjBRUhcUigQm2mUO28YosBBe2MF5F5UwbAIIKnDKfUGplBSVmVGbi7o5jXfDpS0niiiE0T4O4gAgj19/515mKwrUbxPXwmMi3aRk3elWn2ZEWMxhRyoXgGvEqxaPepTuctrWnqsTBZJYhzyrY7YPSsaV1I3nFNHN3bQTML%2B5866ktIxHMiv8AvBHuOGYdxzjj1FerTuzyq8bHVeEpdOm1WVIWnsrW8CLBlCYjNwPm7rnIGfWu6mk0eXVbizea1P2poZ/3UkZIcN2I6ilKKuOMm0dP4avjpaswYy2zcMo6gjuK6KUrHPVjzHZWtzBdRCWCQOv5EV1KSZyShYnUcZFUZNi4zTFcTFACtQO5y3/CQaB/0G9L/wDAuP8AxqQF/wCEg0Dvrml/%2BBcf%2BNMCS11nRbmZYLbVtPmlf7qR3KMx%2BgBoC5oEUygx7UALsBHzAEd6TAxbrRLg3EklvIkkMg5hlJJU5ySrE5HpjpXNVw0ZrY66OKnTe5xOuWEzeZHGZI3AOY50G/r1AHBGB75zXk1Mvaeh7dPM421OHn02xuISReweaQMKr9OQcHPUdsVUaMoompioT2LmjGZALN7u1WSBTIFyTjBB54GOmce1EpOJEYKZ0OuanYjRFmtpmknmnSMkHlgVYtjP0H51TnzK5MYWlY5iwv8AVYbm2FvdALASpGSytuJJz69sf/rq1Va0JlST1Z6X4e1u6bVNK0yPMl5JMrTLF0WHHzFvYA5/KuyhJs4cQoxR6UBgV2I85hTEOxxQFgK80BYreCPAngmbwboc03g/w9JI%2BnW7M76ZCWYmNckkryaCTVPgXwEJBH/whfhrcRkD%2By4M/wDoNAHFfFbwt4Z0e68IXekeHdH0%2B4Ovonm2tjHE%2B021xkZVQccDigDWA4pGiVgxTGPUcYoAeopWERalp9rqNo9tdxB0YYyDhh7gjkGk4pju0eLeMfBNnoOpRxx3rXj3e5lSVcGMZ4yQec%2B/pXFiZcisjvwked6leVodH0ueK/tVLofmkUbSQeD0rzr33PTtZaE%2BrWdo3hi1vrQF1%2B0JGu3GfmUjB4%2BlaJKxDepUg0i/i1GPT7a3%2B26nKcxwxj5IeRhnHbHvx6%2Bh2p0nJnNVr2Wh7T4L8M23h7TvLBE99Nhrq5I5kb0Hoo7CvSjBRVkeVObm9TexirRDAUxWH0hikHNIDU8CnHgbQOf%2BYZbf%2BilqiDxf4keK9T0X4meHPiajXB8JW97J4fvH86I25gldUNwMMWys6YOVwVRcHnkA7740MGHg1gQQfEUZBH/XtcUAKBUmou2gB6gUwHrTAf0FBLPMvHt5av4lurO8ieIrGphkckI2B1B6dT0rzsVuepg/h0ODtpdV13xJLp6W48mNSJRIPlZfr3riVPmO2VXkJ5ddutG0yKBLG2KlgLchi8bBQB5nvnPT2NdFOjrqctSv2PXPhnoDaVowvrxF/tG//fXBxyoPIT2AB6epNelCKijzKkrs69atmYilX5RgwzjIOaAH4wKAEPWkAEnNMqx4f4f/AGq/B%2Bm%2BHtN0ybw3rsklraRQOy%2BVtJRApIy3TimZDm/ai%2BHDWYs28D6m1sG3CEwW%2BwH127sZoAbJ8c/DvxK8T%2BE/Duj6LqdjLBq4ut9x5YTalvMuBtY8/MKAR6/wKRqOG0%2BtFhXDIHrQJsUOPQ0wuO3j0NAjG8W6Faa9pckMiBZguY5MkcjnBwc4NY1aUZrU3o1pU3oeC3uoX2qX8Glw%2BTZgSiMLFkAsflBZup4rKnRUdjWdeU9z0SL4XXUFokOoautw1s6G1C5CIu/Lgg%2BvUe9a8hl7S56uWUeuK1Rk3qJ5ij%2B9RYm4%2BOQHsaLDuPLDHeiwXGlgfWiwXB8AjrRYdwD/2Q=='/%3E%0A%3C/svg%3E)
_________________________________________________________________________________________________Revista Cientifica, FCV-LUZ / Vol.XXXV
3 of 4
En el presente trabajo se reportó dos casos de gemelos
craneotoracópagos en Cavia porcellus. Ambos neonatos nacieron
muertos, hecho que es consistente con reportes previos los
cuales indican una alta tasa de mortalidad perinatal en casos
de malformaciones congénitas graves como el caso de gemelos
craneotoracópagos [9]. Se suele mencionar que los gemelos
craneotoracópagos presentan siempre el mismo sexo y que se origina
su condición cuando el embrión se separa parcialmente formando una
fusión de ambos cuerpos [10]. Con las condiciones antes descritas,
el primer caso implica al parto uno de la madre, dando a conocer un
espécimen macho, mientras que el segundo caso corresponde al
parto número dos, el cual fue un espécimen de sexo hembra.
Estudios previos señalan que los gemelos siameses suelen
compartir un solo hígado y corazón, así como esófago, estómago
e intestinos [11]. No obstante, también se ha descrito que existe
gemelos unidos cranealmente, donde cada cuerpo presenta su
propio corazón e hígado, un sistema digestivo y excretor [12].
Estos son los menos comunes y están unidos desde el pecho
hasta la parte superior del abdomen en una posición cara a cara
[13]. Desde otro punto de vista, se menciona que los gemelos
unidos conocidos como cefalópodos, tienen malformaciones
fetales extremadamente graves e incompatibles con la vida [14].
Un gazapo al nacimiento se considera con un peso normal de 80
a 120 g por animal, incidiendo el número de crías en cada parición
y la calidad de los alimentos que se suministra a los animales [15].
En tal sentido, un reporte menciona que al nacimiento de gemelos
unidos presentan un peso de 136 g, mostrando un parto distócico,
por el incremento anormal del cuerpo. Finalmente, se reporta que
existen otras causas por las cuales la mayoría de los neonatos nacen
muertos, a consecuencia de insuficiencia cardiopulmonar debido a la
fisiología de su corazón dificultando el retorno venoso, al presentar
un solo ventrículo [16]. En base a la escasez de información de
craneotoracópago en roedores, se ha tomado la literatura en humanos
y otras especies distintas, se recomienda futuras investigaciones
desarrollar exámenes adicionales como necropsia de los casos
patológicos para la evaluación de cada órgano y como examen
complementario análisis de sangre como un hemograma y rayos X.
CONCLUSIÓN
Se describió el caso de dos cuyes, con alteraciones patológicas,
la cual fue confirmado como craneotoracópago.
Conflicto de intereses
Los autores informan no existe conflicto de intereses.
REFERENCIAS BIBLIOGRÁFICAS
[1] Nottidge HO, Omobowale TO, Olopade JO, Oladiran OO,
Ajala OO. A case of craniothoracopagus (Monocephalus
thoracopagus tetrabrachius) in a dog. Anat. Histol. Embryol.
[Internet]. 2007; 36(3):179-181. doi: https://doi.org/b6tc4p
[2] Gutiérrez–Delgado IL, Marroquin–Lozada PA, Hijar–Sifuentes
YA, Cabrera–Ramos S. Siameses: Reporte de un caso. Rev.
Peru. Ginecol. Obstet. [Internet]. 2011 [Consultado 10 Ene
2025]; 57(3):203-206. Disponible en: https://goo.su/HhV7nJ
[3] Panduro–Barón JG, Cervantes–Moreno MC, Barrios–Prieto E,
Quintero–Estrella IM, Estrada–Solorio MI, Fajardo–Dueñas
S. Gemelos unidos (siameses). Reporte de tres casos. Rev.
Med. [Internet]. 2013 [Consultado 10 Ene 2025]; 4(4):276-
279. Disponible en: https://goo.su/fTirY
[4] López–Márquez A, Hernández–Avendaño V, Durán–Padilla
MA. Gemelos unidos toracópagos: Estudio post mortem y
revisión de la literatura. Rev. Med. Hosp. Gen. Méx. [Internet].
2003 [Consultado 10 Ene 2025]; 66(1):37-42. Disponible en:
https://goo.su/SyrIOA
[5] Pérez–Muñuzuri ME, Señarís A, Freiría I, Macía M. Siameses
céfalo–toracópagos: Reporte de un caso. Prog. Obstet. Ginecol.
[Internet]. 2010; 53(2):76–79. doi: https://doi.org/fcdgcf
[6] Ingar J, Huertas E, Mezarina F, Gutiérrez G, Ordemar P.
Siameses: presentación de un caso. Rev. Peru. Ginecol. Obstet.
[Internet]. 2007; 53(3):213–216. doi: https://doi.org/g76kmk
[7] Rojas Lleonart I, Silveira Prado EA, Rojas Borroto L, Oramas
Torres E. Malformaciones congénitas: consideraciones sobre su
presentación fenotípica. REDVET. [Internet]. 2010 [Consultado
10 Ene 2025]; 11(4):1–13. Disponible en: https://goo.su/1mbPIi
[8] Ibrahim A. Congenital anomalies in animals. Med. J. Clin.
Trials Case Stud. [Internet]. 2023 [Consultado 10 Ene 2025];
7(4):000344. Disponible en: https://goo.su/9rCID
[9] Pacífico Pereira KHN, dos Santos Correia LEC, Ritir Oliveira
EL, Bastos Bernardo R, Nagib Jorge ML, Mezzena Gobato ML,
Ferreira de Souza F, Souza Rocha N, Biagio Chiacchio S, Gomes
Lourenço ML. Incidence of congenital malformations and
impact on the mortality of neonatal canines. Theriogenology
[Internet]. 2019; 140:52–57. doi: https://doi.org/p2bf
[10] Tovar Larrucea JA. Gemelos unidos (siameses): Problemas
éticos y técnicos. An. RANM. [Internet]. 2018; 135(1):60-64.
doi: https://doi.org/p2bg
[11] Xiao–Wen L, Yong–Yi C, Yao–Zhang Y, Zhi–Yi C. Early
ultrasound diagnosis of conjoined twins at eight weeks of
pregnancy: A case report. World J. Clin. Cases [Internet].
2020; 8(21):5389-5393. doi: https://doi.org/p2bh
FIGURA 3. Cuy (hembra) A. Vista ventral, se determina el sexo, flechas rojas B. Vista
laterolateral, se presenta dos cuerpos unidos por un solo cráneo, flecha verde. C.
Vista laterolateral, dos miembros anteriores y cuatro miembros posteriores, en la
parte dorsal del cráneo se nota cuatro orejas, dos de ellas se encuentran unidas
entre sí, mientras que las dos orejas restantes se ubican en su respectivo lugar
anatómicamente, flechas amarillas