'%3E%0A%3Cpath d='M0 98.6H935v-26H0v26Z' class='g0'/%3E%0A%3C/g%3E%0A%3Cpath d='M0 1169.7H935v-26H0v26Z' class='g0'/%3E%0A%3Cpath clip-path='url(%23c0)' d='M935 1169.7h935v-26H935v26Z' class='g0'/%3E%0A%3Cpath d='M108.7 166.3H248.8M82.3 274H217.7m42.2 91.1H400.3M201.2 456.3H338m40.3 58.1h67.5M82.3 530.9h58.3m172.6 91.2H441.1M401 680.3h44.8M82.3 696.8h94.9m-68.5 91.1H244.6m62.8 74.7H439.7M248.9 970.2H384.3m-217.9 58.2H287.3m-178.6 91.2H241M519.5 182.8H655M545.8 274H679.7m75 74.6H883M735.4 423.3H867.9M519.5 622.1H656.8m-111 91.2H683m36 91.1H857.5M545.8 895.6H667.4m-35.3 91.1H753.6m-176 74.7h138' class='g1'/%3E%0A%3C/svg%3E)
Nesfatin-1 levels pregnancy toxemia / Yaprakci and Akkuş_____________________________________________________________________
6 of 7
and expression of cloned human galanin receptors GALR2 and
GALR3. J. Neurochem. [Internet]. 1998; 71(6):2239–2251.
doi: https://doi.org/d887kh
[14] Walewski JL, Ge F, Lobdell IV, Levin N, Schwartz GJ, Vasselli
JR, Pomp A, Dakin G, Berk PD. Spexin is a novel human
peptide that reduces adipocyte uptake of long chain fatty
acids and causes weight loss in rodents with diet–induced
obesity. Obesity [Internet]. 2014; 22(7):1643–1652. doi:
https://doi.org/f58whj
[15] Gambaro SE, Zubiría MG, Giordano AP, Portales AE, Alzamendi
A, Rumbo M, Giovambattista A. Spexin improves adipose
tissue inflammation and macrophage recruitment in obese
mice. Biochim. Biophys. Acta, Mol. Cell Biol. Lipids [Internet].
2020; 1865(7):158700. doi: https://doi.org/g672b2
[16] Mikuła R, Pruszyńska–Oszmałek E, Pszczola M, Rząsińska J,
Sassek M, Nowak KW, Nogowski L, Kołodziejski PA. Changes
in metabolic and hormonal profiles during transition period
in dairy cattle–the role of spexin. BMC Vet. Res. [Internet].
2021; 17:359. doi: https://doi.org/g9dzxd
[17] Uzti̇ mür M, Ünal CN. Evaluation of pregnancy toxemia in goats:
Metabolic profile, hormonal findings, and redox balance. Small
Rumin. Res. [Internet]. 2024; 241:107385. doi: https://doi.
org/pzw6
[18] Shimizu H, Oh–i S, Hashimoto K, Nakata M, Yamamoto S, Yoshida
N, Eguchi H, Kato I, Inoue K, Satoh T, Okada S, Yamada M, Yada
T, Mori M. Peripheral administration of nesfatin–1 reduces food
intake in mice: the leptin–independent mechanism. Endocrinol.
[Internet]. 2009; 150(2):662-671. doi: https://doi.org/d9tt7g
[19] Su Y, Zhang J, Tang Y, Bi F, Liu JN. The novel function of
nesfatin–1: anti–hyperglycemia. Biochem. Biophys. Res.
Commun. [Internet]. 2010; 391(1):1039-1042. doi: https://
doi.org/b363pz
[20] Ogiso K, Asakawa A, Amitani H, Nakahara T, Ushikai M,
Haruta I, Koyama KI, Amitani M, Harada T, Yasuhara D, Inui
A. Plasma nesfatin–1 concentrations in restricting–type
anorexia nervosa. Peptides [Internet]. 2011; 32(1):150-153.
doi: https://doi.org/cc4xhs
[21] Zhang Z, Li L, Yang M, Liu H, Boden G, Yang G. Increased
plasma levels of nesfatin–1 in patients with newly diagnosed
type 2 diabetes mellitus. Exp. Clin. Endocrinol. Diabetes
[Internet]. 2012; 120(2):91-95. doi: https://doi.org/fscsqc
[22] Tan BK, Hallschmid M, Kern W, Lehnert H, Randeva HS.
Decreased cerebrospinal fluid/ plasma ratio of the novel
satiety molecule, nesfatin–1/NUCB-2, in obese humans:
Evidence of nesfatin–1/NUCB-2 resistance and implications
for obesity treatment. J. Clin. Endocrinol. Metab. [Internet].
2011; 96(4):669-673. doi: https://doi.org/fp35cx
[23] Yosten GL. Novel neuropeptides in the control of food intake:
neuronostatin and nesfatin–1. Vitam. Horm. [Internet]. 2013;
92:1-25. doi: https://doi.org/pzxx
[24] Başar O, Akbal E, Köklü S, Koçak E, Tuna Y, Ekiz F, Gültuna
S, Meriç Yilmaz F, Aydoğan T. A novel appetite peptide,
nesfatin–1 in patients with non–alcoholic fatty liver disease.
Scand. J. Clin. Lab. Invest. [Internet]. 2012; 72(6):479-483.
doi: https://doi.org/g7rv2f
[25] Li Z, Gao L, Tang H, Yin Y, Xiang X, Li Y. Zhao J, Mulholland
M, Zhang W. Peripheral effects of nesfatin–1 on glucose
homeostasis. PloS One. [Internet]. 2013; 8(8):e71513. doi:
https://doi.org/f5d2sk
[26] Yang M, Zhang Z, Wang C, Li K, Li S, Boden G, Li L, Yang G.
Nesfatin–1 action in the brain increases insulin sensitivity
through Akt/AMPK/TORC2 pathway in diet–induced insulin
resistance. Diabetes. [Internet]. 2012; 61(8):1959-1968.
doi: https://doi.org/f35rpk
[27] Nakata M, Manaka K, Yamamoto S, Mori M, Yada T. Nesfatin–1
enhances glucose–induced insulin secretion by promoting Ca
2+
influx through L–type channels in mouse islet β–cells. Endocr.
J. [Internet]. 2011; 58(4):305-313. doi: https://doi.org/dtrc74
[28] Aslan M, Celik O, Celik N, Turkcuoglu I, Yilmaz E, Karaer
A, Simsek Y, Celik E, Aydin, S. Cord blood nesfatin–1 and
apelin-36 levels in gestational diabetes mellitus. Endocrine
[Internet]. 2012; 41:424-429. doi: https://doi.org/fzdrq9
[29] Bogardus C. Metabolic abnormalities in the development of
non–insulin dependent diabetes mellitus. In: LeRoith D, Taylor
SI, Olefsky JM, editors. Diabetes Mellitus: A fundamental and
clinical text. 3
rd
ed. Philadelphia (USA): Lippincott–Raven.
1996; p. 459-467.
[30] Herpertz S, Wagener R, Albus C, Kocnar M, Wagner R, Best
F, Schleppinghoff BS, Filz HP, Förster K, Thomas W, Mann K,
Köhle K, Senf W. Diabetes mellitus and eating disorders: a
multicenter study on the comorbidity of the two diseases.
J. Psychosom. Res. [Internet]. 1998; 44(3-4):503-515. doi:
https://doi.org/dtdd2q
[31] Duehlmeier R, Fluegge I, Schwert B, Ganter M. Insulin
sensitivity during late gestation in ewes affected by pregnancy
toxaemia and in ewes with high and low susceptibility to this
disorder. J. Vet. Intern. Med. [Internet]. 2013; 27:359–366.
doi: https://doi.org/f4rb2w
[32] Oh–I S, Shimizu H, Satoh T, Okada S, Adachi S, Inoue K, Eguchi
H, Yamamoto M, Imaki T, Hashimoto K, Tsuchiya T, Monden T,
Horiguchi K, Yamada M, Mori M. Identification of nesfatin–1
as a satiety molecule in the hypothalamus. Nature [Internet].
2006; 443(7112):709-712. doi: https://doi.org/bzkh96
[33] Liu Y, Chen X, Qu Y, Song L, Lin Q, Li M, Su K, Li Y, Dong, J.
Central nesfatin–1 activates lipid mobilization in adipose
tissue and fatty acid oxidation in muscle via the sympathetic
nervous system. BioFactors. [Internet]. 2020; 46(3):454-464.
doi: https://doi.org/pzz6
[34] Dong J, Xu H, Xu H, Wang PF, Cai GJ, Song HF, Wang CC,
Dong ZT, Ju YJ, Jiang ZY. Nesfatin–1 stimulates fatty–acid
oxidation by activating AMP–activated protein kinase in STZ–
induced type 2 diabetic mice. PLoS One. [Internet]. 2013;
8(12):83397. doi: https://doi.org/pzz7
[35] Pietrocola F, Galluzzi L, Bravo–San Pedro JM, Madeo F,
Kroemer G. Acetyl coenzyme A: A central metabolite and
second messenger. Cell. Metab. [Internet]. 2015; 21(6):805–
821. doi: https://doi.org/f7d239